Пружинный маятник: амплитуда колебаний, период, формула. Формула частоты колебаний пружинного маятника Пружинный маятник частота

Исследование колебаний маятника проводится на установке, схема которой приведена на рис.5. Установка состоит из пружинного маятника, системы регистрации колебаний на основе пьезоэлектрического датчика, системы возбуждения вынужденных колебаний, а также системы обработки информации на персональном компьютере. Исследуемый пружинный маятник состоит из стальной пружины с коэффициентом жесткости k и тела маятника m , в центре которого вмонтирован постоянный магнит. Движение маятника происходит в жидкости и при небольших скоростях колебаний возникающая сила трения может быть с достаточной точностью аппроксимирована линейным законом, т.е.

Рис.5 Блок-схема экспериментальной установки

Для увеличения силы сопротивления при движении в жидкости, тело маятника изготовлено в виде шайбы с отверстиями. Для регистрации колебаний используется пьезоэлектрический датчик, к которому подвешена пружина маятника. Во время движения маятника сила упругости пропорциональна смещению х ,
Так как ЭДС, возникающая в пьезодатчике в свою очередь пропорциональна силе давления, то сигнал, получаемый с датчика будет пропорционален смещению тела маятника от положения равновесия.
Возбуждение колебаний осуществляется с помощью магнитного поля. Гармонический сигнал, создаваемый ПК усиливается и подается на катушку возбуждения, расположенную под телом маятника. В резултате этого катушки образуется переменное во времени и неоднородное в пространстве магнитное поле. Это поле действует на постоянный магнит, вмонтированный в тело маятника и создает внешнюю периодическую силу. При движении тела вынуждающую силу можно представить в виде суперпозиции гармонических функций , и колебания маятника будут являться суперпозицией колебаний с частотами mw. Однако заметное влияние на движение маятника будет оказывать лишь составляющая силы на частоте w , так как она наиболее близка к резонансной частоте. Поэтому амплитуды составляющих колебаний маятника на частотах mw будут малы. То есть в случае произвольного периодического воздействия колебания с большой степенью точности можно считать гармоническими на частоте w .
Система обработки информации состоит из аналого-цифрового преобразователя и персонального компьютера. Аналоговый сигнал с пьезоэлектрического датчика с помощью аналоге-цифрового преобразователя представляется в цифровом виде и подается на персональном компьютере.

Управление экспериментальной установкой с помощью ЭВМ
После включения компьютера и загрузки программы на экране мо- нитора появляется основное меню, общий вид которого показан на рис.5. Используя клавиши управления курсором , , , , можно выбрать один из пунктов меню. После нажатия кнопки ENTER компьютер приступает к выполнению выбранного режима работы. Простейшие подсказки по выбранному режиму работы содержатся в выделенной строке внизу экрана.
Рассмотрим возможные режимы работы программы:

Статика - этот пункт меню используется для обработки результатов первого упражнения (см. рис.5) После нажатия на кнопку ENTER компьютер запрашивает массу груза маятника. После следующего нажатия кнопки ENTER на экране появляется новая картинка с мигающим курсором. Последовательно записывают на экране массу груза в граммах и, после нажатия пробела, величину растяжения пружины. Нажав на ENTER переходят на новую строку и снова записывают массу груза и величину растяжения пружины. Допускается редактирование данных в пределах последней строки. Для этого нажав клавишу Backspase удаляют неправильное значение массы или растяжения пружины и записывают новое значение. Для изменения данных в других строках необходимо последовательно нажать Esc и ENTER , а затем повторить набор результатов.
После набора данных нажимают на функциональную клавишу F2 . На экране появляются расчитанные с помощью метода наименьших квадратов значения коэффициента жесткости пружины и частоты свободных колебаний маятника. После нажатия на ENTER на экране монитора появляется график зависимости упругой силы от величины расрастяжения пружины. Возврат в основное меню происходит после нажатия любой клавиши.
Эксперимент - этот пункт имеет несколько подпунктов (рис.6). Рассмотрим особенности работы каждого из них.
Частота - в этом режиме с помощью клавиш управления курсором осуществляется задание частоты вынуждающей силы. В том случае, если проводится эксперимент со свободными колебаниями, то необходимо установить значение частоты равное 0 .
Старт - в этом режиме после нажатия кнопки ENTER программа начинает снимать экспериментальную зависимость отклонения маятника от времени. В том случае, когда частота вынуждающей силы равна нулю, на экране появляется картина затухающих колебаний. В отдельном окошке записываются значения частоты колебаний и постоянной затухания. Если частота возбуждающей силы не равна нулю, то наряду с графиками зависимостей отклонения маятника и вынуждающей силы от времени на экране в отдельных окошках записываются значения частоты вынуждающей силы и ее амплитуды, а также измеренных частоты и амплитуды колебаний маятника. Нажав на клавишу Esc можно выйти в основное меню.
Сохранить - если результат эксперимента удовлетворителен, то его можно сохранить, нажав на соответствующую клавишу меню.
Нов. Серия - этот пункт меню используется в том случае, если возникла необходимость отказаться от данных текущего эксперимента. После нажатия клавиши ENTER в этом режиме из памяти машины стираются результаты всех предыдущих экспериментов, и можно начать новую серию измерений.
После проведения эксперимента переходят в режим Измерения . Этот пункт меню имеет несколько подпунктов (рис.7)
График АЧХ - этот пункт меню используется после окончания эксперимента по изучению вынужденных колебаний. На экране монитора строится амллитудно-частотная характеристика вынужденных колебаний.
График ФЧХ - В этом режиме после окончания эксперимента по изучению вынужденных колебаний на экране монитора строится фазочастотная характеристика.
Таблица - этот пункт меню позволяет выдать на экран монитора значения амплитуды и фазы колебаний в зависимости от частоты вынуждающей силы. Эти данные переписываются в тетрадь для отчета по данной работе.
Пункт меню компьютера Выход - окончание работы программы (см. например, рис. 7)

Упражнение 1. Определение коэффициента жесткости пружины статическим методом.

Измерения проводятся путем определения удлинения пружины под действием грузов с известными массами. Рекомендуется провести не менее 7-10 измерений удлинения пружины постепенно подвешивая грузы и изменяя тем самым нагрузку от 20 до 150 г. Используя пункт меню работы программы Статистика результаты этих измерений заносят в память компьютера и определяют коэффициент жесткости пружины используя метод наименьших квадратов. В ходе выполнения упражнения необходимо расчитать значение собственной частоты колебаний маятника

Определение

Частота колебаний ($\nu$) является одним из параметров, которые характеризуют колебания Это величина обратная периоду колебаний ($T$):

\[\nu =\frac{1}{T}\left(1\right).\]

Таким образом, частотой колебаний называют физическую величину, равную числу повторений колебаний за единицу времени.

\[\nu =\frac{N}{\Delta t}\left(2\right),\]

где $N$ - число полных колебательных движений; $\Delta t$ - время, за которые произошли данные колебания.

Циклическая частота колебаний (${\omega }_0$) связана с частотой $\nu $ формулой:

\[\nu =\frac{{\omega }_0}{2\pi }\left(3\right).\]

Единицей измерения частоты в Международной системе единиц (СИ) является герц или обратная секунда:

\[\left[\nu \right]=с^{-1}=Гц.\]

Пружинный маятник

Определение

Пружинным маятником называют систему, которая состоит из упругой пружины, к которой прикреплен груз.

Допустим, что масса груза равна $m$, коэффициент упругости пружины $k$. Масса пружины в таком маятнике обычно не учитывается. Если рассматривать горизонтальные движения груза (рис.1), то он движется под действием силы упругости, если систему вывели из состояния равновесия и предоставили самой себе. При этом часто считают, что силы трения можно не учитывать.

Уравнения колебаний пружинного маятника

Пружинный маятник, который совершает свободные колебания - это пример гармонического осциллятора. Пусть он выполняет колебания вдоль оси X. Если колебания малые, выполняется закон Гука, то уравнение движения груза запишем как:

\[\ddot{x}+{\omega }^2_0x=0\left(4\right),\]

где ${\omega }^2_0=\frac{k}{m}$ - циклическая частота колебаний пружинного маятника. Решение уравнения (4) это функция синуса или косинуса вида:

где ${\omega }_0=\sqrt{\frac{k}{m}}>0$- циклическая частота колебаний пружинного маятника, $A$ - амплитуда колебаний; ${(\omega }_0t+\varphi)$ - фаза колебаний; $\varphi $ и ${\varphi }_1$ - начальные фазы колебаний.

Частота колебаний пружинного маятника

Из формулы (3) и ${\omega }_0=\sqrt{\frac{k}{m}}$, следует, что частота колебаний пружинного маятника равна:

\[\nu =\frac{1}{2\pi }\sqrt{\frac{k}{m}}\ \left(6\right).\]

Формула (6) справедлива в случае, если:

  • пружина в маятнике считается невесомой;
  • груз, прикрепленный к пружине, является абсолютно твердым телом;
  • крутильные колебания отсутствуют.

Выражение (6) показывает, что частота колебаний пружинного маятника увеличивается с уменьшением массы груза и увеличением коэффициента упругости пружины. Частота колебаний пружинного маятника не зависит от амплитуды. Если колебания не являются малыми, сила упругости пружины не подчиняется закону Гука, то появляется зависимость частоты колебаний от амплитуды.

Примеры задач с решением

Пример 1

Задание. Период колебаний пружинного маятника составляет $T=5\cdot {10}^{-3}с$. Чему равна частота колебаний в этом случае? Какова циклическая частота колебаний этого груза?

Решение. Частота колебаний - это величина обратная периоду колебаний, следовательно, для решения задачи достаточно воспользоваться формулой:

\[\nu =\frac{1}{T}\left(1.1\right).\]

Вычислим искомую частоту:

\[\nu =\frac{1}{5\cdot {10}^{-3}}=200\ \left(Гц\right).\]

Циклическая частота связана с частотой $\nu $ как:

\[{\omega }_0=2\pi \nu \ \left(1.2\right).\]

Вычислим циклическую частоту:

\[{\omega }_0=2\pi \cdot 200\approx 1256\ \left(\frac{рад}{с}\right).\]

Ответ. $1)\ \nu =200$ Гц. 2) ${\omega }_0=1256\ \frac{рад}{с}$

Пример 2

Задание. Массу груза, висящего на упругой пружине (рис.2), увеличивают на величину $\Delta m$, при этом частота уменьшается в $n$ раз. Какова масса первого груза?

\[\nu =\frac{1}{2\pi }\sqrt{\frac{k}{m}}\ \left(2.1\right).\]

Для первого груза частота будет равна:

\[{\nu }_1=\frac{1}{2\pi }\sqrt{\frac{k}{m}}\ \left(2.2\right).\]

Для второго груза:

\[{\nu }_2=\frac{1}{2\pi }\sqrt{\frac{k}{m+\Delta m}}\ \left(2.2\right).\]

По условию задачи ${\nu }_2=\frac{{\nu }_1}{n}$, найдем отношение $\frac{{\nu }_1}{{\nu }_2}:\frac{{\nu }_1}{{\nu }_2}=\sqrt{\frac{k}{m}\cdot \frac{m+\Delta m}{k}}=\sqrt{1+\frac{\Delta m}{m}}=n\ \left(2.3\right).$

Получим из уравнения (2.3) искомую массу груза. Для этого обе части выражения (2.3) возведем в квадрат и выразим $m$:

Ответ. $m=\frac{\Delta m}{n^2-1}$

Тела под действием силы упругости, потенциальная энергия которой пропорциональна квадрату смещения тела из положения равновесия:

где k – жесткость пружины.

При свободных механических колебаниях кинетическая и потенциальная энергии изменяются периодически. При максимальном отклонении тела от положения равновесия его скорость, а следовательно, и кинетическая энергия обращаются в нуль. В этом положении потенциальная энергия колеблющегося тела достигает максимального значения. Для груза на горизонтально расположенной пружине потенциальная энергия – это энергия упругих деформаций пружины.

Когда тело при своем движении проходит через положение равновесия, его скорость максимальна. В этот момент оно обладает максимальной кинетической и минимальной потенциальной энергией. Увеличение кинетической энергии происходит за счет уменьшения потенциальной энергии. При дальнейшем движении начинает увеличиваться потенциальная энергия за счет убыли кинетической энергии и т. д.

Таким образом, при гармонических колебаниях происходит периодическое превращение кинетической энергии в потенциальную и наоборот.

Если в колебательной системе отсутствует трение, то полная механическая энергия при свободных колебаниях остается неизменной.

Для груза на пружине:

Запуск колебательного движения тела осуществляется с помощью кнопки Старт . Остановить процесс в любой момент времени позволяет кнопка Стоп .

Графически показано соотношение между потенциальной и кинетической энергиями при колебаниях в любой момент времени. Обратите внимание, что в отсутствие затухания полная энергия колебательной системы остается неизменной, потенциальная энергия достигает максимума при максимальном отклонении тела от положения равновесия, а кинетическая энергия принимает максимальное значение при прохождении тела через положение равновесия.

), один конец которой жёстко закреплён, а на втором находится груз массы m.

Когда на массивное тело действует упругая сила, возвращающая его в положение равновесия, оно совершает колебания около этого положения.Такое тело называют пружинным маятником. Колебания возникают под действием внешней силы. Колебания, которые продолжаются после того, как внешняя сила перестала действовать, называют свободными. Колебания, обусловленные действием внешней силы, называют вынужденными. При этом сама сила называется вынуждающей.

В простейшем случае пружинный маятник представляет собой движущееся по горизонтальной плоскости твердое тело, прикрепленное пружиной к стене.

Второй закон Ньютона для такой системы при условии отсутствия внешних сил и сил трения имеет вид:

Если на систему оказывают влияние внешние силы, то уравнение колебаний перепишется так:

, где f(x) - это равнодействующая внешних сил соотнесённая к единице массы груза.

В случае наличия затухания , пропорционального скорости колебаний с коэффициентом c :

См. также

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Пружинный маятник" в других словарях:

    У этого термина существуют и другие значения, см. Маятник (значения). Колебания маятника: стрелками показаны векторы скорости (v) и ускорения (a) … Википедия

    Маятник - устройство, которое, колеблясь, упорядочивает движение механизма часов. Пружинный маятник. Регулирующая деталь часов, состоящая из маятника и его пружины. До изобретения маятниковой пружины, часы приводились в движение одним маятником.… … Словарь часов

    МАЯТНИК - (1) математический (или простой) (рис. 6) тело небольших размеров, свободно подвешенное к неподвижной точке на нерастяжимой нити (или стержне), масса которой пренебрежимо мала по сравнению с массой тела, совершающего гармонические (см.)… … Большая политехническая энциклопедия

    Твёрдое тело, совершающее под действием прилож. сил колебания ок. неподвижной точки или оси. Математическим М. наз. материальная точка, подвешенная к неподвижной точке на невесомой нерастяжимой нити (или стержне) и совершающая под действием силы… … Большой энциклопедический политехнический словарь

    Часы с пружинным маятником - пружинный маятник регулирующая часть часов, также используется в часах средних и маленьких размеров (переносные часы, настольные, и т.д.) … Словарь часов - маленькая спиральная пружина, прикрепленная концами к маятнику и его молоточку. Пружинный маятник регулирует часы, точность которых частично зависит от качества маятниковой пружины … Словарь часов

    ГОСТ Р 52334-2005: Гравиразведка. Термины и определения - Терминология ГОСТ Р 52334 2005: Гравиразведка. Термины и определения оригинал документа: (гравиметрическая) съемка Гравиметрическая съемка, проводимая на суше. Определения термина из разных документов: (гравиметрическая) съемка 95… … Словарь-справочник терминов нормативно-технической документации

Колебания массивного тела, обусловленные действием упругой силы

Анимация

Описание

Когда на массивное тело действует упругая сила, возвращающая его в положение равновесия, оно совершает колебания около этого положения.

Такое тело называют пружинным маятником. Колебания возникают под действием внешней силы. Колебания, которые продолжаются после того, как внешняя сила перестала действовать, называют свободными. Колебания, обусловленные действием внешней силы, называют вынужденными. При этом сама сила называется вынуждающей.

В простейшем случае пружинный маятник представляет собой движущееся по горизонтальной плоскости твердое тело, прикрепленное пружиной к стене (рис. 1).

Пружинный маятник

Рис. 1

Прямолинейное движение тела описывают посредством зависимости его координаты от времени:

x = x (t ). (1)

Если известны все силы, действующие на рассматриваемое тело, то эту зависимость можно установить при помощи второго закона Ньютона:

md 2 x /dt 2 = S F , (2)

где m - масса тела.

Правая часть уравнения (2) есть сумма проекций на ось x всех действующих на тело сил.

В рассматриваемом случае главную роль играет упругая сила, которая является консервативной и может быть представлена в виде:

F (x ) = - dU (x )/dx , (3)

где U = U (x ) - потенциальная энергия деформированной пружины.

Пусть x есть удлинение пружины. Экспериментально установлено, что при малых значениях относительного удлинения пружины, т.е. при условии, что:

Ѕ x Ѕ << l ,

где l - длина недеформированной пружины.

Приближенно справедлива зависимость:

U (x ) = k x 2 /2, (4)

где коэффициент k называют жесткостью пружины.

Из этой формулы вытекает следующее выражение для упругой силы:

F (x ) = - kx . (5)

Эту зависимость называют законом Гука.

Кроме силы упругости на движущееся по плоскости тело может действовать сила трения, которая удовлетворительно описывается эмпирической формулой:

F тр = - r dx /dt , (6)

где r - коэффициент трения.

С учетом формул (5) и (6) уравнение (2) можно записать так:

md 2 x /dt 2 + rdx /dt + kx = F (t ), (7)

где F (t ) - внешная сила.

Если на тело действует только сила Гука (5), то свободные колебания тела будут гармоническими. Такое тело называют гармоническим пружинным маятником.

Второй закон Ньютона в этом случае приводит к уравнению:

d 2 x /dt 2 + w 0 2 x = 0, (8)

w 0 = sqrt (k /m ) (9)

Частота колебаний.

Общее решение уравнения (8) имеет вид:

x (t ) = A cos (w 0 t + a ), (10)

где амплитуда A и начальная фаза a определяются начальными условиями.

Когда на рассматриваемое тело действует только сила упругости (5), его полная механическая энергия не изменяется с течением времени:

mv 2 / 2 + k x 2 /2 = const . (11)

Это утверждение составляет содержание закона сохранения энергии гармонического пружинного маятника.

Пусть на массивное тело кроме упругой силы, возвращающей его в положение равновесия, действует сила трения. В этом случае возбужденные в некоторый момент времени свободные колебания тела будут затухать с течением времени и тело будет стремиться к положению равновесия.

В этом второй закон Ньютона (7) можно записать так:

m d 2 x /dt 2 + rdx /dt + kx = 0, (12)

где m - масса тела.

Общее решение уравнения (12) имеет вид:

x(t) = a exp(- b t )cos (w t + a ), (13)

w = sqrt(w o 2 - b 2 ) (14)

Частота колебаний,

b = r / 2 m (15)

Коэффициент затухания колебаний, амплитуда a и начальная фаза a определяются начальными условиями. Функция (13) описывает так называемые затухающие колебания.

Полная механическая энергия пружинного маятника, т.е. сумма его кинетической и потенциальной энергий

E = m v 2 /2 + kx 2 / 2 (16)

изменяется с течением времени по закону:

dE / dt = P , (17)

где P = - rv 2 - мощность силы трения, т.е. энергия, переходящая в тепло за единицу времени.

Временные характеристики

Время инициации (log to от -3 до -1);

Время существования (log tc от 1 до 15);

Время деградации (log td от -3 до 3);

Время оптимального проявления (log tk от -3 до -2).