Может ли углекислый газ. Углекислый газ (диоксид углерода)


Упадок сил, слабость, больная голова, депрессия - знакомо такое состояние? Чаще всего так бывает осенью и зимой, а плохое самочувствие списывают на нехватку солнечного света. Но дело не в нём, а в избыточном содержании углекислого газа в воздухе, которым вы дышите. Ситуация с уровнем СО₂ в жилых помещениях и транспорте в нашей стране поистине катастрофическая. Духота, повышенная влажность и плесень также являются следствием отсутствующей вентиляции. Герметичные пластиковые окна и кондиционеры лишь усугубляют ситуацию. А вы знаете, что при двухкратном превышении (относительно уличного фона) уровня углекислого газа в воздухе мозговая активность снижается в 2 раза? Кстати, именно зевающие студенты на лекциях являются показателем повышенного содержания CO₂ в аудитории. А очень часто вентиляция отсутствует и в офисных зданиях. О какой производительности может быть речь, если у человека просто не работают мозги?

Итак, начнём с основ. Человеку при дыхании поглощает кислород, а выделяет углекислый газ. Также углекислый газ выделяется при сжигании углеводородов. Средний уровень СО₂ на нашей планете в настоящий момент составляет около 400 PPM (Parts per million - частей на миллион, или 0,04%) и постоянно растет вследствие постоянного роста потребления нефтепродуктов. При этом стоит знать, что деревья поглощают углекислый газ и именно в этом заключается их главная функция (а не как ошибочно считают, что они лишь вырабатывают кислород).

Пока человек находится на открытом воздухе - проблем нет, но они начинаются когда он оказывается в помещении. Если человека запереть в герметичной комнате без притока свежего воздуха, то он умрет не от недостатка кислорода, как ошибочно считает большинство, а от многократного превышения уровня углекислого газа, который этот человек сам же и выработал в легких. Отставим проблемы вентиляции общественного транспорта (про это я напишу отдельно) и обратим наше внимание на городские квартиры/загородные дома, в которых массово отсутствует вентиляция.

При этом человек проводит в своем доме/квартире минимум треть своей жизни, а в реальности половину - нельзя экономить на своем собственном здоровье!


2. Проблема повышенного содержания CO₂ в воздухе особенно актуальна в холодное время года, т.к. летом практически у всех постоянно открыты форточки. А с наступлением холодов форточки открывают всё реже и реже, сводя в конечном итоге к эпизодическому проветриванию. И, какое совпадение, именно в холодное время года появляется депрессия, сонливость и упадок сил.

3. Раньше даже была такая традиция - заклеивать щели на окнах перед холодами. Часто вместе с форточками и полностью исключали поступение свежего воздуха в дом. Я еще раз акцентирую внимание, что свежий воздух нужен не потому, что в нём есть необходимый для дыхания кислород, а для того, чтобы путём замещения воздуха в помещении снизить избыточное содержание углекислого газа.

4. Многие думают, что у них же есть вытяжка (в квартирах как минимум на кухне и в санузле), вот через неё и будет вентилироваться помещение. Ага, вдобавок установив пластиковые окна, которые полностью герметичны. Но как воздух пойдет в вытяжку если у вас нет притока в виде либо щелей в рамах, либо открытого окна? А при хорошей тяге обычно тянет воздух из подъезда.

5. Хуже только поставить кондиционер в виде сплит-системы и пользоваться им при закрытых окнах. Запомните, при работе кондиционера НЕЛЬЗЯ закрывать окна! Вот современный герметичный загородный дом, у которого нет щелей в ограждающих конструкциях. И не надо вестись на рассказы о том, что дерево или газобетон "дышат" и следовательно можно наплевать на вентиляцию. Запомните, под этим термином подразумевается высокая паропроницаемость материала, а не способность подавать в дом свежий уличный воздух.

6. Большинство ограничивается вентилятором на вытяжке из санузла и кухни. Окей, включили вентилятор, в доме закрыты все окна и двери. Какой будет результат? Правильно, в доме будет разрежение, ведь новому воздуху неоткуда взяться. Чтобы естественная вентиляция работала, в дом должен поступать свежий воздух.

7. Для измерений уровня углекислого газа в воздухе сейчас появились относительно доступные датчики с NDIR-сенсором. Не дисперсионный инфракрасный метод (NDIR) основан на изменении интенсивности ИК-излучения до и после поглощения в инфракрасном детекторе с избирательной чувствительностью. Изначально я собирался купить такой датчик на aliexpress в прошлом году (тогда он стоил примерно 100 долларов), но выросшая цена вследствие роста курса доллара заставила задуматься и поискать альтернативные варианты. Неожиданно этот датчик нашелся в России под российским брендом за те же 100 долларов по прошлогоднему курсу. Итого, на Яндекс.Маркете я нашел самое выгодное предложение и приобрел датчик по цене 3500 рублей. Модель называется MT8057. Разумеется, у датчика есть погрешность, но она не важна, когда речь идет о том, что нам важны измерения с превышением концентрации углекислого газа в несколько раз выше нормы.

8. Закрытые пластиковые окна, кондиционеры - все это ерунда по сравнению с газовой плитой в квартире (для фото я зажег газовую горелку, т.к. для съемки плиты её надо было помыть).

9. Итак, всё внимание на график. Кухня 9 квадратных метров, потолки высотой 3 метра, открытая дверь на кухню (!), закрытое окно, имеется вытяжка с естественным побуждением (летом тяга слабая), один человек. Датчик стоит на высоте 1 метр от пола, на обеденном столе. "Нормальный" уровень СО₂ в помещении без людей около 600 PPM. Приходит один человек - уровень СО₂ моментально повышается. Уходит - падает. Приходит снова - опять повышается. И после этого включает одну (!) газовую конфорку. Уровнь СО₂ практически моментально поднимается выше 2000 PPM. Тревога! Открываем форточку. Наблюдаем как медленно понижается концентрация углекислого газа в воздухе. А добавьте сюда еще 1-2 человек. Даже если не включать газовую плиту, то 3 взрослых человека не выполняя тяжелую физическую работу поднимают уровень CO₂ в комнате до критической отметки за 30 минут.

Готовите на газовой плите? Обязательно нужно открыть форточку и включить вытяжку (сделать и то и другое одновременно).

Включили кондиционер? Обязательно открыть окно.

Просто находитесь в комнате? Обязательно открыть форточку. А если в комнате много людей - открыть окно.

И ночью, во время сна окно необходимо держать открытым.

Короче говоря, у вас либо должен быть приточный вентиляционный канал, либо постоянно открытое окно.

10. Что касается деревьев и чем они могут быть полезны. Их важнейшая функция в процессе роста - поглощение углекислого газа. Мало кто задумывается почему дрова горят и откуда в них столько энергии. Так эта энергия в виде углерода и накапливается в стволе дерева в результате поглощения углекислого газа. А кислород деревья вырабатывают как побочный продукт в реакции фотосинтеза.

11. Открыть окно в теплое время года не составляет труда и в целом летом проблема не так актуальна (кроме случаев использования кондиционеров с закрытыми окнами). Проблемы начинаются зимой, ведь постоянно открытой форточку никто не держит, это огромные неконтролируемые потери тепла и будет банально холодно. Вот именно в этот момент и стоит поднимать тревогу. Здоровье - бесценно.

Проблема очень серьезна и носит глобальный характер. Я, например, до осени прошлого года вообще не задумывался о важности вентиляции для здоровья: что в квартире, что в загородном доме. Если заглянуть в прошлое, то именно регулярные осенние депрессии, сонливость и плохое настроение в течение холодного времени года в городской квартире сподвигли думать в сторону того, что нужно так сказать уезжать из города и строить , т.к. осенью-зимой болела голова и была общая слабость организма при нахождении в городе. Но как только я выезжал на природу - проблема исчезала. Я списывал всё это не нехватку солнечного света, но дело было не в нём. Зимой я переставал держать открытым окно (холодно же) и получал многократное превышение СО₂ в квартире.

Самое простое и доступное решение проблемы - постоянно держать открытым окно, либо проветривать ориентируясь на показатели с датчика CO₂. Нормальным уровнем CO₂ в помещении может считаться концентрация до 1000 PPM, если выше - нужно срочно проветривать. Косвенным показателем высокой концентрации углекислого газа в воздухе можно считать влажность. Если без объективных причин и понижения температуры в помещении начинает повышаться влажность - значит и растет уровень CO₂.

Опасность повышенной концентрации углекислого газа в воздухе заключается в том, что человеческий организм реагирует с очень большой задержкой. К тому моменту, когда вы почувствовали, что в комнате душно и надо проветрить - вы уже минимум полчаса находились в помещении с повышенным содержанием CO₂ в воздухе.

В следующем посте я расскажу о том, какие проблемы есть с вентиляцией в общественном транспорте (автобусы, поезда, самолеты). А также покажу как правильно организовать вентиляцию в загородном доме, про которую все почему-то забывают.

Продолжение следует.

Статьи по теме, для самостоятельного изучения.

(IV), диоксид углерода или же двуокись углерода. Также его еще называют угольным ангидридом. Он является совершенно бесцветным газом, который не имеет запаха, с кисловатым вкусом. Углекислый газ тяжелее воздуха и плохо растворяется в воде. При температуре ниже - 78 градусов Цельсия кристаллизуется и становится похожим на снег.

Из газообразного состояния это вещество переходит в твердое, поскольку не может существовать в жидком состоянии в условиях атмосферного давления. Плотность углекислого газа в нормальных условиях составляет 1,97 кг/м3 - в 1,5 раза выше Диоксид углерода в твердом виде называется «сухой лед». В жидкое состояние, в котором его можно хранить длительное время, он переходит при повышении давления. Рассмотрим подробнее данное вещество и его химическое строение.

Углекислый газ, формула которого CO2, состоит из углерода и кислорода, а получается он в результате сжигания или гниения органических веществ. Оксид углерода содержится в воздухе и подземных минеральных источниках. Люди и животные тоже выделяют углекислый газ при выдыхании воздуха. Растения без освещения выделяют его, а во время фотосинтеза интенсивно поглощают. Благодаря процессу метаболизма клеток всех живых существ оксид углерода является одним из главных составляющих окружающей природы.

Этот газ не токсичен, но если он скапливается в большой концентрации, может начаться удушье (гиперкапния), а при его недостатке развивается противоположное состояние - гипокапния. Диоксид углерода пропускает и отражает инфракрасные. Он является который непосредственно влияет на глобальное потепление. Это происходит из-за того, что уровень его содержания в атмосфере постоянно растет, что и приводит к парниковому эффекту.

Диоксид углерода получают промышленным путем из дымных или печных газов, или же путем разложения карбонатов доломита и известняка. Смесь этих газов тщательно промывается специальным раствором, состоящим из карбоната калия. Далее она переходит в гидрокарбонат и при нагревании разлагается, в результате чего высвобождается углекислота. Углекислота (H2CO3) образуется из углекислого газа, растворенного в воде, но в современных условиях получают ее и другими, более прогрессивными методами. После того как углекислый газ очищен, его сжимают, охлаждают и закачивают в баллоны.

В промышленности это вещество широко и повсеместно применяется. Пищевики используют его как разрыхлитель (например, для приготовления теста) или в качестве консерванта (Е290). С помощью углекислого газа производят различные тонизирующие напитки и газировки, которые так любимы не только детьми, но и взрослыми. Диоксид углерода используют при изготовлении пищевой соды, пива, сахара, шипучих вин.

Углекислый газ применяется и при производстве эффективных огнетушителей. С помощью углекислого газа создается активная среда, необходимая при При высокой температуре сварочной дуги углекислый газ распадается на кислород и угарный газ. Кислород взаимодействует с жидким металлом и окисляет его. Углекислота в баллончиках применяется в пневматических ружьях и пистолетах.

Авиамоделисты используют это вещество в качестве топлива для своих моделей. С помощью углекислого газа можно значительно повысить урожайность культур, выращиваемых в оранжерее. Также в промышленности широко используется в котором продукты питания сохраняются значительно лучше. Его применяют в качестве хладагента в холодильниках, морозильных камерах, электрических генераторах и других теплоэнергетических установках.

Углекислый газ, или диоксид углерода, или CO 2 — одно из самых распространенных на Земле газообразных веществ. Он окружает нас в течение всей нашей жизни. Углекислый газ не имеет цвета, вкуса и запаха и никак не ощущается человеком.

Он является важным участником обмена веществ живых организмов. Газ сам по себе не ядовит, но не поддерживает дыхание, поэтому превышение его концентрации ведет к ухудшению снабжения тканей организма кислородом и к удушью. Углекислый газ широко применяется в быту и в промышленности.

Что такое диоксид углерода

При атмосферном давлении и комнатной температуре диоксид углерода находится в газообразном состоянии. Это наиболее часто встречающаяся его форма, в ней он участвует в процессах дыхания, фотосинтеза и обмена веществ живых организмов.

При охлаждении до -78 °С он, минуя жидкую фазу, кристаллизуется и образует так называемый «сухой лед», широко применяемый как безопасный хладагент в пищевой и химической промышленности и в уличной торговле и рефрижераторных перевозках.

При особых условиях — давлении в десятки атмосфер — углекислота переходит в жидкое агрегатное состояние. Это происходит на морском дне, на глубине свыше 600 м.

Свойства углекислого газа

В 17 веке Жан-Батист Ван Гельмонт из Фландрии открыл углекислый газ и определил его формулу. Подробное исследование и описание было сделано столетие спустя шотландцем Джозефом Блэком. Он исследовал свойства углекислого газа и провел серию опытов, в которых доказал, что он выделяется при дыхании животных.

В состав молекулы вещества входит один атом углерода и два атома кислорода. Химическая формула углекислого газа записывается как CO 2

В нормальных условиях не обладает вкусом, цветом и запахом. Только вдыхая большое его количество, человек ощущает кислый привкус. Его дает угольная кислота, образующаяся в малых дозах при растворении углекислого газа в слюне. Эта особенность применяется для приготовления газированных напитков. Пузырьки в шампанском, просекко, пиве и лимонаде — это и есть углекислый газ, образовавшийся в результате естественных процессов брожения или добавленный в напиток искусственно.

Плотность углекислого газа больше плотности воздуха, поэтому при отсутствии вентиляции он скапливается внизу. Он не поддерживает окислительные процессы, такие, как дыхание и горение.

Поэтому углекислоту применяют в огнетушителях. Это свойство углекислого газа иллюстрируют с помощью фокуса — горящую свечу опускают в «пустой» стакан, где она и гаснет. В действительности стакан заполнен CO 2 .

Углекислый газ в природе естественные источники

К таким источникам относятся окислительные процессы разной интенсивности:

  • Дыхание живых организмов. Из школьного курса химии и ботаники все помнят, что в ходе фотосинтеза растения поглощают углекислый газ и выделяют кислород. Но не все помнят, что это происходит только днем, при достаточном уровне освещения. В темное время суток растения наоборот, поглощают кислород и выделяют углекислый газ. Так что попытка улучшить качество воздуха в комнате, превращая ее в заросли фикусов и герани может сыграть злую шутку.
  • Извержения и другая вулканическая активность. CO 2 выбрасывается из глубин мантии Земли вместе с вулканическими газами. В долинах рядом с источниками извержений газа настолько много, что, скапливаясь в низинах, он вызывает удушье животных и даже людей. Известны несколько случаев в Африке, когда задыхались целые деревни.
  • Горение и гниение органики. Горение и гниение — это одна и та же реакция окисления, но протекающая с разной скоростью. Богатые углеродом разлагающиеся органические остатки растений и животных, лесные пожары и тлеющие торфяники — все это источники диоксида углерода.
  • Самым же большим природным хранилищем CO 2 являются воды мирового океана, в которых он растворен.

За миллионы лет эволюции основанной на углеродных соединениях жизни на Земле в различных источниках накопились многие миллиарды тонн углекислого газа. Его одномоментный выброс в атмосферу приведет к гибели всего живого на планете из-за невозможности дыхания. Хорошо, что вероятность такого одномоментного выброса стремится к нулю.

И скусственные источники углекислого газа

Углекислый газ попадает в атмосферу и в результате человеческой жизнедеятельности. Самыми активными источниками в наше время считаются:

  • Индустриальные выбросы, происходящие в ходе сгорания топлива на электростанциях и в технологических установках
  • Выхлопные газы двигателей внутреннего сгорания транспортных средств: автомобилей, поездов, самолетов и судов.
  • Сельскохозяйственные отходы — гниение навоза в больших животноводческих комплексах

Кроме прямых выбросов, существует и косвенное воздействие человека на содержание CO 2 в атмосфере. Это массовая вырубка лесов в тропической и субтропической зоне, прежде всего в бассейне Амазонки.

Несмотря на то, что в атмосфере Земли содержится менее процента диоксида углерода, он оказывает все возрастающее действие на климат и природные явления. Углекислый газ участвует в создании так называемого парникового эффекта путем поглощения теплового излучения планеты и удерживания этого тепла в атмосфере. Это ведет к постепенному, но весьма угрожающему повышению среднегодовой температуры планеты, таянию горных ледников и полярных ледяных шапок, росту уровня мирового океана, затоплению прибрежных регионов и ухудшению климата в далеких от моря странах.

Знаменательно, что на фоне общего потепления на планете происходит значительное перераспределение воздушных масс и морских течений, и в отдельных регионах среднегодовая температура не повышается, а понижается. Это дает козыри в руки критикам теории глобального потепления, обвиняющим ее сторонников в подтасовке фактов и манипуляции общественным мнением в угоду определенным политическим центрам влияния и финансово-экономическим интересам

Человечество пытается взять под контроль содержание углекислого газа в воздухе, были подписаны Киотский и Парижский протоколы, накладывающие на национальные экономики определенные обязательства. Кроме того, многие ведущие автопроизводители автомобилей объявили о сворачивании к 2020-25 годам выпуска моделей с двигателями внутреннего сгорания и переходе на гибриды и электромобили. Однако некоторые ведущие экономики мира, такие, как Китай и США, не торопятся выполнять старые и брать на себя новые обязательства, мотивируя это угрозой уровню жизни в своих странах.

Углекислый газ и мы: чем опасен CO 2

Углекислый газ — один из продуктов обмена веществ в организме человека. Он играет большую роль в управлении дыханием и снабжением кровью органов. Рост содержания CO 2 в крови вызывает расширение сосудов, способных таким образом транспортировать больше кислорода к тканям и органам. Аналогично и система дыхания понуждается к большей активности, если концентрация углекислоты в организме растет. Это свойство используют в аппаратах искусственной вентиляции легких, чтобы подстегнуть собственные органы дыхания пациента к большей активности.

Кроме упомянутой пользы, превышение концентрации СO 2 может принести организму и вред. Повышенное содержание во вдыхаемом воздухе приводит к тошноте, головной боли, удушью и даже к потере сознания. Организм протестует против углекислого газа и подает человеку сигналы. При дальнейшем увеличении концентрации развивается кислородное голодание, или гипоксия. Co 2 мешает кислороду присоединяться к молекулам гемоглобина, которые и осуществляют перемещение связанных газов по кровеносной системе. Кислородное голодание ведет к снижению работоспособности, ослаблению реакции и способностей к анализу ситуации и принятию решений, апатии и может привести к смерти.

Такие концентрации углекислого газа, к сожалению, достижимы не только в тесных шахтах, но и в плохо проветриваемых школьных классах, концертных залах, офисных помещениях и транспортных средствах — везде, где в замкнутом пространстве без достаточного воздухообмена с окружающей средой скапливается большое количество людей.

Основное применение

CO 2 широко применяется в промышленности и в быту – в огнетушителях и для изготовления газировки, для охлаждения продуктов и для создания инертной среды при сварке.

Применение углекислого газа отмечено в таких отраслях, как:

  • для чистки поверхностей сухим льдом.

Фармацевтика

  • для химического синтеза компонентов лекарственных средств;
  • создания инертной атмосферы;
  • нормализация индекса pH отходов производства.

Пищевая отрасль

  • производство газированных напитков;
  • упаковка продуктов питания в инертной атмосфере для продления срока годности;
  • декаффеинизация кофейных зерен;
  • замораживание или охлаждение продуктов.

Медицина, анализы и экология

  • Создание защитной атмосферы при полостных операциях.
  • Включение в дыхательные смеси в качестве стимулятора дыхания.
  • В хроматографических анализах.
  • Поддержание уровня pH в жидких отходах производства.

Электроника

  • Охлаждение электронных компонентов и устройств при тестировании на температурную стойкость.
  • Абразивная очистка в микроэлектронике (в твердой фазе).
  • Очищающее средство в производстве кремниевых кристаллов.

Химическая отрасль

Широко применяется в химическом синтезе в качестве реагента и в качестве регулятора температур в реакторе. CO 2 отлично подходит для обеззараживания жидких отходов с низким индексом pH.

Применяется также для осушения полимерных веществ, растительных или животных фиброматериалов, в целлюлозном производстве для нормализации уровня pH как компонентов основного процесса, так и его отходов.

Металлургическая отрасль

В металлургии CO 2 в основном служит делу экологии, защиты природы от вредных выбросов путем их нейтрализации:

  • В черной металлургии — для нейтрализации плавильных газов и для донного перемешивания расплава.
  • В цветной металлургии при производстве свинца, меди, никеля и цинка — для нейтрализации газов при транспортировке ковша с расплавом или горячих слитков.
  • В качестве восстановительного агента при организации оборота кислотных шахтных вод.

Сварка в углекислой среде

Разновидность сварки под флюсом является сварка в углекислой среде. Операции сварочных работ с углекислым газом осуществляется плавящимся электродом и распространен в процессе монтажных работ, устранении дефектов и исправления деталей с тонкими стенками.

Структурная формула

Истинная, эмпирическая, или брутто-формула: CO 2

Химический состав Углекислого газа

Молекулярная масса: 44.009

Диокси́д углеро́да (углеки́слый газ, двуо́кись углеро́да, окси́д углеро́да (IV), у́гольный ангидри́д) - бесцветный газ (в нормальных условиях), без запаха, с химической формулой CO 2 . Плотность при нормальных условиях 1,98 кг/м³ (тяжелее воздуха). При атмосферном давлении диоксид углерода не существует в жидком состоянии, переходя непосредственно из твёрдого состояния в газообразное. Твёрдый диоксид углерода называют сухим льдом. При повышенном давлении и обычных температурах углекислый газ переходит в жидкость, что используется для его хранения. Концентрация углекислого газа в атмосфере Земли составляет в среднем 0,04 %. Углекислый газ легко пропускает ультрафиолетовые лучи и лучи видимой части спектра, которые поступают на Землю от Солнца и обогревают её. В то же время он поглощает испускаемые Землёй инфракрасные лучи и является одним из парниковых газов, вследствие чего принимает участие в процессе глобального потепления. Постоянный рост уровня содержания этого газа в атмосфере наблюдается с начала индустриальной эпохи.

Оксид углерода(IV) - углекислый газ, газ без запаха и цвета, тяжелее воздуха, при сильном охлаждении кристаллизуется в виде белой снегообразной массы - «сухого льда». При атмосферном давлении он не плавится, а испаряется, температура сублимации −78 °С. Углекислый газ образуется при гниении и горении органических веществ. Содержится в воздухе и минеральных источниках, выделяется при дыхании животных и растений. Растворим в воде (1 объём углекислого газа в одном объёме воды при 15 °С).

По химическим свойствам диоксид углерода относится к кислотным оксидам. При растворении в воде образует угольную кислоту. Реагирует с щёлочами с образованием карбонатов и гидрокарбонатов. Вступает в реакции электрофильного замещения (например, с фенолом) и нуклеофильного присоединения (например, с магнийорганическими соединениями). Оксид углерода(IV) не поддерживает горения. В нём горят только некоторые активные металлы. Взаимодействует с оксидами активных металлов. При растворении в воде образует угольную кислоту. Реагирует со щёлочами с образованием карбонатов и гидрокарбонатов.

Организм человека выделяет приблизительно 1 кг (2,3 фунта) углекислого газа в сутки. Этот углекислый газ переносится от тканей, где он образуется в качестве одного из конечных продуктов метаболизма, по венозной системе и затем выделяется с выдыхаемым воздухом через лёгкие. Таким образом, содержание углекислого газа в крови велико в венозной системе, и уменьшается в капиллярной сети лёгких, и мало в артериальной крови. Содержание углекислого газа в пробе крови часто выражают в терминах парциального давления, то есть давления, которое бы имел содержащийся в пробе крови в данном количестве углекислый газ, если бы весь объём пробы крови занимал только он. Углекислый газ (CO 2 ) транспортируется в крови тремя различными способами (точное соотношение каждого из этих трёх способов транспортировки зависит от того, является ли кровь артериальной или венозной).

  • Большая часть углекислого газа (от 70 % до 80 %) преобразуется ферментом карбоангидразой эритроцитов в ионы гидрокарбоната.
  • Около 5 % - 10 % углекислого газа растворено в плазме крови.
  • Около 5 % - 10 % углекислого газа связано с гемоглобином в виде карбаминосоединений (карбогемоглобин).

Гемоглобин, основной кислород-транспортирующий белок эритроцитов крови, способен транспортировать как кислород, так и углекислый газ. Однако углекислый газ связывается с гемоглобином в ином месте, чем кислород. Он связывается с N-терминальными концами цепей глобина, а не с гемом. Однако благодаря аллостерическим эффектам, которые приводят к изменению конфигурации молекулы гемоглобина при связывании, связывание углекислого газа понижает способность кислорода к связыванию с ним же, при данном парциальном давлении кислорода, и наоборот - связывание кислорода с гемоглобином понижает способность углекислого газа к связыванию с ним же, при данном парциальном давлении углекислого газа. Помимо этого, способность гемоглобина к преимущественному связыванию с кислородом или с углекислым газом зависит также и от pH среды. Эти особенности очень важны для успешного захвата и транспорта кислорода из лёгких в ткани и его успешного высвобождения в тканях, а также для успешного захвата и транспорта углекислого газа из тканей в лёгкие и его высвобождения там. Углекислый газ является одним из важнейших медиаторов ауторегуляции кровотока. Он является мощным вазодилататором. Соответственно, если уровень углекислого газа в ткани или в крови повышается (например, вследствие интенсивного метаболизма - вызванного, скажем, физической нагрузкой, воспалением, повреждением тканей, или вследствие затруднения кровотока, ишемии ткани), то капилляры расширяются, что приводит к увеличению кровотока и соответственно к увеличению доставки к тканям кислорода и транспорта из тканей накопившейся углекислоты. Кроме того, углекислый газ в определённых концентрациях (повышенных, но ещё не достигающих токсических значений) оказывает положительное инотропное и хронотропное действие на миокард и повышает его чувствительность к адреналину, что приводит к увеличению силы и частоты сердечных сокращений, величины сердечного выброса и, как следствие, ударного и минутного объёма крови. Это также способствует коррекции тканевой гипоксии и гиперкапнии (повышенного уровня углекислоты). Ионы гидрокарбоната очень важны для регуляции pH крови и поддержания нормального кислотно-щелочного равновесия. Частота дыхания влияет на содержание углекислого газа в крови. Слабое или замедленное дыхание вызывает респираторный ацидоз, в то время как учащённое и чрезмерно глубокое дыхание приводит к гипервентиляции и развитию респираторного алкалоза. Кроме того, углекислый газ также важен в регуляции дыхания. Хотя наш организм требует кислорода для обеспечения метаболизма, низкое содержание кислорода в крови или в тканях обычно не стимулирует дыхание (вернее, стимулирующее влияние нехватки кислорода на дыхание слишком слабо и «включается» поздно, при очень низких уровнях кислорода в крови, при которых человек нередко уже теряет сознание). В норме дыхание стимулируется повышением уровня углекислого газа в крови. Дыхательный центр гораздо более чувствителен к повышению уровня углекислого газа, чем к нехватке кислорода. Как следствие этого, дыхание сильно разрежённым воздухом (с низким парциальным давлением кислорода) или газовой смесью, вообще не содержащей кислорода (например, 100 % азотом или 100 % закисью азота) может быстро привести к потере сознания без возникновения ощущения нехватки воздуха (поскольку уровень углекислоты в крови не повышается, ибо ничто не препятствует её выдыханию). Это особенно опасно для пилотов военных самолётов, летающих на больших высотах (в случае попадания вражеской ракеты в кабину самолёта и разгерметизации кабины пилоты могут быстро потерять сознание). Эта особенность системы регуляции дыхания также является причиной того, почему в самолётах стюардессы инструктируют пассажиров в случае разгерметизации салона самолёта в первую очередь надевать кислородную маску самим, прежде чем пытаться помочь кому-либо ещё - делая это, помогающий рискует быстро потерять сознание сам, причём даже не ощущая до последнего момента какого-либо дискомфорта и потребности в кислороде. Дыхательный центр человека пытается поддерживать парциальное давление углекислого газа в артериальной крови не выше 40 мм ртутного столба. При сознательной гипервентиляции содержание углекислого газа в артериальной крови может снизиться до 10-20 мм ртутного столба, при этом содержание кислорода в крови практически не изменится или увеличится незначительно, а потребность сделать очередной вдох уменьшится как следствие уменьшения стимулирующего влияния углекислого газа на активность дыхательного центра. Это является причиной того, почему после некоторого периода сознательной гипервентиляции легче задержать дыхание надолго, чем без предшествующей гипервентиляции. Такая сознательная гипервентиляция с последующей задержкой дыхания может привести к потере сознания до того, как человек ощутит потребность сделать вдох. В безопасной обстановке такая потеря сознания ничем особенным не грозит (потеряв сознание, человек потеряет и контроль над собой, перестанет задерживать дыхание и сделает вдох, дыхание, а вместе с ним и снабжение мозга кислородом восстановится, а затем восстановится и сознание). Однако в других ситуациях, например, перед нырянием, это может быть опасным (потеря сознания и потребность сделать вдох наступят на глубине, и в отсутствие сознательного контроля в дыхательные пути попадёт вода, что может привести к утоплению). Именно поэтому гипервентиляция перед нырянием опасна и не рекомендуется.

В промышленных количествах углекислота выделяется из дымовых газов, или как побочный продукт химических процессов, например, при разложении природных карбонатов (известняк, доломит) или при производстве алкоголя (спиртовое брожение). Смесь полученных газов промывают раствором карбоната калия, которые поглощают углекислый газ, переходя в гидрокарбонат. Раствор гидрокарбоната при нагревании или при пониженном давлении разлагается, высвобождая углекислоту. В современных установках получения углекислого газа вместо гидрокарбоната чаще применяется водный раствор моноэтаноламина, который при определённых условиях способен абсорбировать CO 2 , содержащийся в дымовом газе, а при нагреве отдавать его; таким образом отделяется готовый продукт от других веществ. Также углекислый газ получают на установках разделения воздуха как побочный продукт получения чистого кислорода, азота и аргона. В лабораторных условиях небольшие количества получают взаимодействием карбонатов и гидрокарбонатов с кислотами, например мрамора, мела или соды с соляной кислотой, используя, например, аппарат Киппа. Использование реакции серной кислоты с мелом или мрамором приводит к образованию малорастворимого сульфата кальция, который мешает реакции, и который удаляется значительным избытком кислоты. Для приготовления напитков может быть использована реакция пищевой соды с лимонной кислотой или с кислым лимонным соком. Именно в таком виде появились первые газированные напитки. Их изготовлением и продажей занимались аптекари.

В пищевой промышленности углекислота используется как консервант и разрыхлитель, обозначается на упаковке кодом Е290. Жидкая углекислота широко применяется в системах пожаротушения и в огнетушителях. Автоматические углекислотные установки для пожаротушения различаются по системам пуска, которые бывают пневматическими, механическими или электрическими. Устройство для подачи углекислого газа в аквариум может включать в себя резервуар с газом. Простейший и наиболее распространенный метод получения углекислого газа основан на конструкции для изготовления алкогольного напитка браги. При брожении, выделяемый углекислый газ вполне может обеспечить подкормку аквариумных растений. Углекислый газ используется для газирования лимонада и газированной воды. Углекислый газ используется также в качестве защитной среды при сварке проволокой, но при высоких температурах происходит его диссоциация с выделением кислорода. Выделяющийся кислород окисляет металл. В связи с этим приходится в сварочную проволоку вводить раскислители, такие как марганец и кремний. Другим следствием влияния кислорода, также связанного с окислением, является резкое снижение поверхностного натяжения, что приводит, среди прочего, к более интенсивному разбрызгиванию металла, чем при сварке в инертной среде. Углекислота в баллончиках применяется в пневматическом оружии (в газобаллонной пневматике) и в качестве источника энергии для двигателей в авиамоделировании. Хранение углекислоты в стальном баллоне в сжиженном состоянии выгоднее, чем в виде газа. Углекислота имеет сравнительно низкую критическую температуру +31°С. В стандартный 40-литровый баллон заливают около 30 кг сжиженного углекислого газа, и при комнатной температуре в баллоне будет находиться жидкая фаза, а давление составит примерно 6 МПа (60 кгс/см²). Если температура будет выше +31°С, то углекислота перейдёт в сверхкритическое состояние с давлением выше 7,36 МПа. Стандартное рабочее давление для обычного 40-литрового баллона составляет 15 МПа (150 кгс/см²), однако он должен безопасно выдерживать давление в 1,5 раза выше, то есть 22,5 МПа,- таким образом, работа с подобными баллонами может считаться вполне безопасной. Твёрдая углекислота - «сухой лёд» - используется в качестве хладагента в лабораторных исследованиях, в розничной торговле, при ремонте оборудования (например: охлаждение одной из сопрягаемых деталей при посадке внатяг) и т. д. Для сжижения углекислого газа и получения сухого льда применяются углекислотные установки.

Измерение парциального давления углекислого газа требуется в технологических процессах, в медицинских применениях - анализ дыхательных смесей при искусственной вентиляции лёгких и в замкнутых системах жизнеобеспечения. Анализ концентрации CO 2 в атмосфере используется для экологических и научных исследований, для изучения парникового эффекта. Углекислый газ регистрируют с помощью газоанализаторов основанных на принципе инфракрасной спектроскопии и других газоизмерительных систем. Медицинский газоанализатор для регистрации содержания углекислоты в выдыхаемом воздухе называется капнограф. Для измерения низких концентраций CO 2 (а также CO) в технологических газах или в атмосферном воздухе можно использовать газохроматографический метод с метанатором и регистрацией на пламенно-ионизационном детекторе.

Ежегодные колебания концентрации атмосферной углекислоты на планете определяются, главным образом, растительностью средних (40-70°) широт Северного полушария. Вегетация в тропиках практически не зависит от сезона, сухой пояс пустынь 20-30° (обоих полушарий) дает малый вклад в круговорот углекислоты, а полосы суши, наиболее покрытые растительностью, расположены на Земле асимметрично (в Южном полушарии в средних широтах находится океан). Поэтому с марта по сентябрь вследствие фотосинтеза содержание CO 2 в атмосфере падает, а с октября по февраль - повышается. Вклад в зимний прирост дают как окисление древесины (гетеротрофное дыхание растений, гниение, разложение гумуса, лесные пожары), так и сжигание ископаемого топлива (угля, нефти, газа), заметно увеличивающееся в зимний сезон. Большое количество углекислоты растворено в океане. Углекислый газ составляет значительную часть атмосфер некоторых планет Солнечной системы: Венеры, Марса.

Углекислый газ нетоксичен, но по воздействию его повышенных концентраций в воздухе на воздуходышащие живые организмы его относят к удушающим газам (англ.)русск.. Незначительные повышения концентрации до 2-4 % в помещениях приводят к развитию у людей сонливости и слабости. Опасными концентрациями считаются уровни около 7-10 %, при которых развивается удушье, проявляющее себя в головной боли, головокружении, расстройстве слуха и в потере сознания (симптомы, сходные с симптомами высотной болезни), в зависимости от концентрации, в течение времени от нескольких минут до одного часа. При вдыхании воздуха с высокими концентрациями газа смерть наступает очень быстро от удушья. Хотя, фактически, даже концентрация 5-7 % CO2 не смертельна, уже при концентрации 0,1 % (такое содержание углекислого газа наблюдается в воздухе мегаполисов) люди начинают чувствовать слабость, сонливость. Это показывает, что даже при высоких содержаниях кислорода большая концентрация CO2 сильно влияет на самочувствие. Вдыхание воздуха с повышенной концентрацией этого газа не приводит к долговременным расстройствам здоровья и после удаления пострадавшего из загазованной атмосферы быстро наступает полное восстановление здоровья.

Углекислый газ (двуокись углерода, диоксид углерода) занимает важнейшее место среди технических газов, он широко используется практически во всех отраслях промышленности и агропромышленного комплекса. На долю СО 2 приходится 10% всего рынка технических газов, что ставит этот продукт в один ряд с основными продуктами разделения воздуха.

Направления использования углекислого газа в различных агрегатных состояниях многообразны – пищевая промышленность, сварочные газы и смеси, пожаротушение и т.д. Всё больше находит применение и его твердая фаза – сухой лёд, от заморозки, сухих брикетов до очистки поверхностей (бластинга).

Получение

Извне углекислоту получить нельзя по причине того, что в атмосфере ее почти не содержится. Животные и человек получают её при полном расщеплении пищи, поскольку белки, жиры, углеводы, построенные на углеродной основе, при сжигании с помощью кислорода в тканях образуют углекислый газ (СО 2).

В промышленности углекислый газ получают из печных газов, из продуктов разложения природных карбонатов (известняк, доломит). В пищевых целях используется газ, образующийся при спиртовом брожении. Также углекислый газ получают на установках разделения воздуха, как побочный продукт получения чистого кислорода, азота и аргона. В лабораторных условиях небольшие количества СО 2 получают взаимодействием карбонатов и гидрокарбонатов с кислотами, например, мрамора, мела или соды с соляной кислотой. Побочные источники производства СО 2 - продукты горения; брожение; производство жидкого аммиака; установки риформинга; производство этанола; природные источники.

При получении углекислого газа в промышленных масштабах используют три основные группы сырья.

Группа 1 - источники сырья, из которых можно производить чистый СО 2 без специального оборудования для повышения его концентрации:

  • газы химических и нефтехимических производств с содержанием 98-99% СО 2 ;
  • газы спиртового брожения на пивоваренных, спиртовых и гидролизных заводах с 98-99% СО 2 ;
  • газы из естественных источников с 92-99% СО 2 .

Группа 2 - источники сырья, использование которых обеспечивает получение чистого СО 2:

  • газы малораспространенных химических производств с содержанием 80-95% СО 2 .

Группа 3 - источники сырья, использование которых дает возможность производить чистый СО 2 только с помощью специального оборудования:

  • газовые смеси, состоящие в основном из азота и углекислого газа (продукты сгорания углеродсодержащих веществ с содержанием 8-20% СО 2 ;
  • отходящие газы известковых и цементных заводов с 30-40% СО 2 ;
  • колошниковые газы доменных печей с 21-23% СО 2 ;
  • состоящие в основном из метана и углекислого газа и содержащие значительные примеси других газов (биогаз и свалочный газ из биореакторов с 30-45% СО 2 ;
  • попутные газы при добыче природного газа и нефти с содержанием 20-40% СО 2 .

Применение

По ряду оценок, потребление СО2 на мировом рынке превышает 20 млн. метрических тонн в год. Столь высокий уровень потребления формируется под влиянием требований пищевой промышленности и нефтепромысловых предприятий, технологий газирования напитков и других промышленных нужд, например, снижения показателя Ph установок водоочистки, проблем металлургии (в том числе использования сварочного газа) и т.д.

Потребление углекислого газа неуклонно растет, поскольку расширяются сферы его применения, которые охватывают задачи от промышленного назначения до пищевого производства – консервация продуктов, в машиностроении от сварочного производства и приготовления защитных сварочных смесей до очистки поверхностей деталей гранулами «сухого льда», в сельском хозяйстве для подкормки растений, в газовой и нефтяной промышленности при пожаротушении.

Основные области применения СО 2:

  • в машиностроении и строительстве (для сварки и прочее);
  • для холодной посадки частей машин;
  • в процессах тонкой заточки;
  • для электросварки, основанной на принципе защиты расплавленного металла от вредного воздействия атмосферного воздуха;
  • в металлургии;
  • продувка углекислым газом литейных форм;
  • при производстве алюминия и других легкоокисляющихся металлов;
  • в сельском хозяйстве для создания искусственного дождя;
  • в экологии заменяет сильнодействующие минеральные кислоты для нейтрализации щелочной отбросной воды;
  • в изготовлении противопожарных средств;
  • применяется в углекислотных огнетушителях в качестве огнетушащего вещества, эффективно останавливает процесс горения;
  • в парфюмерии при изготовлении духов;
  • в горнодобывающей промышленности;
  • при методе беспламенного взрыва горных пород;
  • в пищевой промышленности;
  • используется как консервант и обозначается на упаковке кодом Е290;
  • в качестве разрыхлителя теста;
  • для производства газированных напитков;

Газирование напитков может происходить одним из двух путей:

  1. При производстве популярных сладких и минеральных вод используется механический способ газирования, который предполагает насыщение углекислым газом какой-либо жидкости. Для этого необходимо специальное оборудование (сифоны, акратофоры, сатураторы) и баллоны со сжатым углекислым газом.
  2. При химическом способе газирования углекислоту получают в процессе брожения. Таким образом получается шампанское вино, пиво, хлебный квас. Углекислота в содовых водах получается в результате реакции соды с кислотой, сопровождающейся бурным выделением углекислого газа.

СО 2 как сварочный газ

Начиная с 1960 года широкое распространение получила сварка легированных и углеродистых сталей в среде углекислого газа (СО 2), отвечающего требованиям ГОСТ 8050. В последнее время все большее распространение в сварочных технологиях машиностроительных предприятий находит применение сварочных газовых смесей аргона и гелия, при этом многие наиболее востребованные газовые смеси включают в себя небольшое количество активных газов (СО 2 или О 2), необходимых для стабилизации сварочной дуги. Однако при сварке углеродистых и низколегированных сталей основных структурных классов на российских предприятиях основным защитным газом по-прежнему продолжает оставаться углекислый газ СО 2 , что объясняется физическими свойствами этого защитного газа и его доступностью.